一、古代滑雪板底下为什么有一层皮毛?
雪板质量不好,板底p-tex材质应该是挤压的,不是石墨烧结的!处理办法建议板底烫蜡时多躺一会,因为140度时ptex会变软,有助于毛融化
二、新滑雪板用前需要打蜡么
回答如下:
新滑板是否需要打蜡还是要依据实际情况去处理。
1.很多新滑板确实在出厂的时候已经打过一次蜡了,新板自带的蜡我们一般叫做“出厂蜡”或者“厂蜡”,是一种喷雾型或者那种擦首晌烂拭的蜡(不是我们去店里做的那种热蜡,需要熨斗的那个)。
那么有了这种“厂蜡”我能否直接滑呢?有时候是可以的,但有时候不行。
2.这就由滑板的四个因素决定者漏:
一、你拆封新雪板后出厂蜡的状态
二、你对雪板上雪后性能表现的期望
三、第一次滑行的时长(这里指的是几天)
四、新雪板是挤压板底还是烧结板底(这几年烧结板居多)
扩展资料:
滑雪板的保养:
1.防潮。不要把板子放到潮湿的仓库里。滑完到室内后最好用干抹布把化了的雪水擦干。
2.修刃和打蜡。这个看滑的频繁程度。一年就季末打一次蜡,修一次刃。打蜡和修刃都需要专业的工具和技术,自己不会弄就找雪具店。
3.放置。长时间放置不要把两只板子板底相对用止滑器卡着,那样时间长了不好。把两只板子分开放谨掘,背面朝上。
三、滑雪板板面是什么材料的?
滑雪板一般分为高山板、越野冬季两项板、跳台板、自由式板、单板等。滑雪板板面有的品牌采用了防滑伤涂层,产品的材质为ABS改性材料,耐冲击,韧性好,使用在滑雪板板面两旁,起补强作用.
以下是滑雪板其余各组成部分的材质:
(1)板芯:英文属性名CORE,板芯主要由不同的木材、玻璃纤维(Fiberglass)和碳纤维(Carbon)通过不同的排列位置和交错层次产生不同的雪板性能。
(2)板底:各大雪板品牌的板底材料不尽相同,但主要还是分两种,一种叫挤压板底,这种板底相对较软,速度自然相对比较慢,但维护空绝和修理比较方便,一般适用于Park(公园板);还有一种叫作烧结板底,这种板底相对较硬,速度很快,但维护和修理相对困难,一般适用于Freeride(高山板)。除了这两种还有很多种混合型板底,从而决定了雪板不同的速度和耐磨程度。
(3)板刃:对于单板的板刃从材质上分大致有两种,一种是钢刃,强度更大,更耐用,用于Freeride(世亏激高山板)和Freestyle(全能板),钢刃的缺点是打磨困难,需要专业的人员和工具;另外一种材质是铜刃,这种搜袜刃相对较软,寿命相应会短一些,更适合在公园玩各种道具,不会出现上Rail卡刃的情况,铜刃打磨比较方面。
产品的材质为ABS改性材料,耐冲击,韧性好,使用在滑雪板板面两旁,起补强作用.
ABS改性材料
滑雪板
四、超高分子量聚乙烯粉料的用途,能说的详细点吗?谢谢!
作为一种助剂,超高分子量聚乙烯微粉及相关改性产品大量应用册渗于油漆涂料、油墨、玻璃钢拉挤型材、SMC\BMC、造纸扰瞎,塑料等缓姿空行业。
目前用量主要集中在纤维、板材‘、管材产品上。
这三种产品占了总需求的80%以上。
不过原料工厂要是产量不大的话,也可以针对用戚逗量比较小的客户进行推广。售扒蚂价也春仔埋会高一些。
粉末成型,烧结,模压,添加,剂出都可以的。
高分子
液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对超高分子量聚乙烯(UHMW-PE)加工性能的改进取得了明显的效果。
用TLCP对超高分子量聚乙烯(UHMW-PE)进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用没老设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。
聚合填充
高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。
与热熔融共混材料相比,由聚合填充工艺制备的超高分子量聚乙烯(UHMW-PE)复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与超高分子量聚乙烯(UHMW-PE)相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯超高分子量聚乙烯(UHMW-PE)提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温伍败度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。
采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制超高分子量聚乙烯(UHMW-PE)分子量大小,使得树脂易加工。
美国专利用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充超高分子量聚乙烯(UHMW-PE)复合材料。另有专利指出,在60℃,1.3MPa且有催化剂存在的条件下,使超高分子量聚乙烯(UHMW-PE)在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了超高分子量聚乙烯(UHMW-PE)复合材料。
超高分子
在超高分子量聚乙烯(UHMW-PE)基体中加入超高分子量聚乙烯(UHMW-PE)纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。超高分子量聚乙烯(UHMW-PE)纤维的加入可使超高分子量聚乙烯(UHMW-PE)的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯超高分子量聚乙烯(UHMW-PE)相比,在超高分子量聚乙烯(UHMW-PE)中加入体积含量为60%的超高分子量聚乙烯(UHMW-PE)纤维,可使最大应力和模量分别提高枯橘升160%和60%。这种自增强的超高分子量聚乙烯(UHMW-PE)材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是才倍受关注的,超高分子量聚乙烯(UHMW-PE)自增强材料的低体积磨损率可提高人造关节的使用寿命。
合金化
超高分子量聚乙烯(UHMW-PE)除可与塑料形成合金来改善其加工性能外,还可获得其它性能。其中,以PP/超高分子量聚乙烯(UHMW-PE)合金最为突出。
通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/超高分子量聚乙烯(UHMW-PE)体系,超高分子量聚乙烯(UHMW-PE)对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用超高分子量聚乙烯(UHMW-PE)增韧PP取得成功,当超高分子量聚乙烯(UHMW-PE)的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上。又有报道,超高分子量聚乙烯(UHMW-PE)与含乙烯链段的共聚型PP共混,在超高分子量聚乙烯(UHMW-PE)的含量为25%时,其冲击强度比PP提高一倍多。以上现象的解释是“网络增韧机理”。
PP/超高分子量聚乙烯(UHMW-PE)共混体系的亚微观相态为双连续相,超高分子量聚乙烯(UHMW-PE)分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。
为了保证“线性互穿网络”结构的形成,必须使超高分子量聚乙烯(UHMW-PE)以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将超高分子量聚乙烯(UHMW-PE)均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。
EPDM能对PP/超高分子量聚乙烯(UHMW-PE)合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和超高分子量聚乙烯(UHMW-PE)相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。
另外,超高分子量聚乙烯(UHMW-PE)也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于超高分子量聚乙烯(UHMW-PE)的软化点以上进行硫化的。
复合化
超高分子量聚乙烯(UHMW-PE)可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,超高分子量聚乙烯(UHMW-PE)还可复合在塑料表面以提高耐冲击性能。
编辑本段应用情况
由于超高分子量聚乙烯有众多的优异特性,它在高性能纤维市场上,包括从海上油田的系泊绳到高性能轻质复合材料方面均显示出极大的优势,在现代化战争和航空、航天、海域防御装备等领域发挥着举足轻重的作用。
1.超高分子量聚乙烯可打造装煤、石灰、水泥、矿粉、盐、谷物等等粉状文件的拖斗、料仓、滑槽的衬里,因为它存在优良的自润滑性、不粘性,可使上述粉状文件对于储运设施不发生粘附景象,保障稳固保荐。
2.超高分子量聚乙烯用来流砂等的液体保荐管道,与其他管道相比突出性能表现在:与竹管相比寿数提高18倍,利息降至1/25,与锦纶管相比寿数提高3倍,利息降至1/8。在保荐时,管内屏障比非金属管小25%,大大提高了保荐频率。
3.在滑槽、铲斗和矿石舱室的内衬等范围,用传统非金属文件时,遇到寒冷潮湿天气,物品就会解冻在非金属上,而采纳高分子聚乙烯板材则决不会,从而大大缩小了卸货成本。在散装车船的自卸漏子上内衬一层高分子聚乙烯板材后,匀称卸货工夫由本来的16~20h缩小到8h。
4.在国防军需装备方面,由于其耐冲击性能好,比能量吸收大,在军事上可以制成防护衣料、头盔、防弹材料,如直升飞机、坦克和舰船的装甲防护板、雷达的防护外壳罩、导弹罩、防弹衣、防刺衣、盾牌、降落伞等.
5.在航天工程中,由于其轻质高强和抗冲击性能好,适用于各种飞机的翼尖结构、飞船结构和浮标飞机等。同时也可以用作航天飞机着陆的减速降落伞和飞机上悬吊重物的绳索,取代了传统的钢缆绳和合成纤维绳索,其发展速度异常迅速。
6.在民用领域,制成的绳索、缆绳、船帆和渔具适用于海洋工程,在自重下的断裂长度是钢绳的8倍,是芳纶的2倍。该绳索用于超级油轮、海洋操作平台、灯塔等的固定锚绳,解决了以往使用钢缆遇到的锈蚀和尼龙、聚酯缆绳遇到的腐蚀、水解、紫外降解等引起缆绳强度降低和断裂,需经常进行更换的问题。
7.在工业应用中,可用作耐压容器、传送带、过滤材料、汽车缓冲板等;建筑方面可以用作墙体、隔板结构等,用它作增强水泥复合材料可以改善水泥的韧度,提高其抗冲击性能。由于其具有优良的耐磨性、耐冲击性,它在机械制造行业中得到广泛应用,可制作各种齿轮、凸轮、叶轮、滚轮、滑轮、轴承、轴瓦、轴套、削轴、垫片、密封垫、弹性联轴节、螺钉等机械零部件。
8.在体育用品上已经制成安全帽、滑雪板、帆轮板、钓竿、球拍及自行车、滑翔板、超轻量飞机零部件等,其性能优于传统材料。
9.在医学方面,用于牙托材料、医用移植物和整形缝合等领域,它的生物相容性和耐久性都较好,并具有高的稳定性,不会引起过敏,已作临床应用。还用于医用手套和其他医疗措施等方面。
你可以百度一下