返回首页

九九式甲ha8199望远镜镜片怎么拆?

来源:www.cc3x.com   时间:2023-02-25 13:02   点击:172  编辑:admin   手机版

一、九九式甲ha8199望远镜镜片怎么拆?

1、有一些类型的眼镜直接从内侧往外使劲一推镜片,就可以把眼镜片拆下来。

2、如果是金属材质的镜框,可以把边缘的一些小螺丝用工具拧下来,也可以把镜片取下来。

3、如果是有机框架,眼镜片卡在镜框上取不下来,我们也可以把眼镜泡到热水中,这样再取可能效果会更简单。

4、我们在取眼镜片的时候,一定不要用力太大,以免对镜框造成损伤。

二、军用九二式甲HA8199望远镜的价格是多少?

没有固定价格。二手三百元左右。全新千元以上

告诉你吧 我和你的遭遇一样。世界上没有军用九二式HA8199 价格多少要看骗子给你卖多少

320

三、望远镜有哪些类型?

分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。开普勒式望远镜的基本原理是首先远处的光线进入物镜的凸透镜,第1次成倒立、缩小的实像,相当于照相机;然后这个实像进入目镜的凸透镜,第2次成正立、放大的虚像,这相当于放大镜。

因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜(普通消色差望远镜)应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱。

伽利略望远镜

物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。

其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。它由一个凹透镜(目镜)和一个凸透镜(物镜)构成。其优点是结构简单,能直接成正像。

望远镜的分类

望远镜的核心就是镜片组,让我们脱去它的外壳,来看看望远镜的内部结构。

普通手持望远镜(非天文望远镜)可以分成大体两类:屋脊式、保罗式。

保罗式主要就是他的反射镜片组是由两个直角棱镜(或类直角)。

保罗棱镜又叫直角棱镜,是传统的经典设计,比较常见的设计是由两个完全相同的直角棱镜构成,优点是形状简单,容易加工和装配,缺点是重量和体积较大。(这比较符合老毛子风格)

制造简单,能满足需求,经得起闹腾,这种设计谁会用呢?没错 就是军品!几乎所有的军用望远镜都是保罗结构,例如国内的有62、98、国外的蔡司、视得乐的军用镜等等。

屋脊式望远镜也称为别汉棱式望远镜,比较常见的设计是由一个屋脊棱镜和一个半五棱镜构成,如图2.

屋脊式望远镜的优点是光学结构相对轻便和紧凑,比较适合户外运动便携产品,缺点是即使是相对简单的屋脊棱镜,外形也比保罗棱镜复杂的多,加工难度大,此外从装配难度和维护性来讲也难于传统的普罗棱镜,因此成本较高。这种结构的望远镜主要其中在高端望远镜中。例如尼康的一系列望远镜(日本鬼子弄得东西确实比较精细)。

判断一种望远镜的结构很简单,看看他的镜筒,如果是直筒的,就是屋脊式,非直筒的就是保罗式。

如果你要是去条件比较恶劣的环境,保罗式是你的最佳选择,如果你去观鸟,看风景,选择屋脊式望远镜会给你带来无比艳丽的视觉享受。

下面我们来看一下天文望远镜的种类。

按照光学结构的不同天文望远镜可分为许多不同的种类,但比较常用的是两种:折射式天文望远镜(用光学透镜做物镜)和反射式天文望远镜(用曲面反光镜做物镜)。尽管两者可以达到一样的效果,但它们的光学结构是完全不同的。

折射式天文望远镜:折射式天文望远镜通常采用两片或多片镀膜透镜组合而成的消色差物镜。一般来讲,制作大口径(100mm以上)的组合透镜是非常困难的,所以常见的折射式天文望远镜的口径都不超过100mm。

反射式天文望远镜:反射式天文望远镜的物镜是一曲面反射镜(主镜)。在物镜的光路上放置了一个呈45度倾斜的小平面反光镜(副镜)以把物镜反射的光线转向镜筒一侧的目镜。反射式天文望远镜相对比较容易做到大的通光口径。这就意味着反射式天文望远镜可以有很强的聚光能力,可以用以观测昏暗的深空目标,以及用以天文拍照。 折射望远镜是以会聚远方物体的光而现出实象的透镜为物镜的望远镜它会使从远方来的光折射集中在焦点,折射望远镜的好处就是使用方便,稍微忽略了保养也不会看不清楚,因为镜筒内部由物镜和目镜封着,空气不会流动,所以比较安定,此外,由于光轴的错开所引起的像恶化的情形也比反射望远镜好,而口径不大透镜皆为球面,所以可以机械研磨大量生产,故价格较便宜。

(1)伽利略型望远镜

人类第一只望远镜,使用凹透镜当目镜,透过望远镜所看到的像与实际用眼睛直接看的一样是正立像,地表观物很方便但不能扩大视野,目前天文观测已不再使用此型设计。

(2)开普勒型望远镜

使用凸透镜当目镜,现今所有的折射式望远镜皆为此型,成像上下左右巅倒,但这样对我们天体观测是没有影响的,因为目镜是凸透镜可以把两枚以上的透镜放在一起成一组而扩大视野,并且能改善像差除却色差。 反射望远镜不用物镜而用叫主镜的凹面的反射镜。另外有一面叫做次要镜的小镜将主镜所收集的光反射出镜筒外面,由次要镜反射出来的光像再用目镜放大来看,反射式最大的长处是由于主镜是镜子,光不需通过玻璃内,所以完全不会有色差,也不太会吸收紫外光或红光,因此非常适合分光 等物理观测,虽无色差但有其它各类的像差。如将反射凹面磨成抛物线形(Parabolic),则可消除球面差。因为镜筒不能密封,所以主镜很易受烟尘影响,故难于保养,同时受气温与镜筒内气流的影响较大,搬运时又很易移动了主镜与副镜的位置,而校正光轴亦相当繁复,带起来不甚方便。此外副镜座的衍射作用会使较光恒星的星像出现十字或星形的衍射纹,亦使影像反差降低,另外像的稳定度也不及折射式望远镜。

目前知名反射望远镜的设计大致分为五种..我只列举两种市售一般中小型的反射望远镜

(1)牛顿式 (Newtonian)

一六六八年由牛顿发明设计,由抛物面的主镜和平面次要镜所构成,以对着光轴45度的角度将平面次要镜装在从主镜反射过来的光的焦点的稍微前方(如上图)这种结构最为简单,影像反差较高,亦最多人选用,通常焦比在f4至f8之间。

(2)卡赛格林式或简称卡式 (Cassegrain)

利用一块双曲面凸镜(Convex hyperboloid)作为副镜,在主竞焦点前将光线聚集,穿过主镜一个圆孔而聚焦在主镜之后。因为经过一次反射,所以镜筒可以缩短,但视场较窄,像散较牛顿式严重,同时有少许场曲(Curvature of field)。 采反射和折射的长处之型式,基本上和反射一样,也有反射式望远镜的缺点,为了消除偏离光轴的视野的慧星像差使用着透镜,且主镜为球面镜,比反射型容易研磨..只介绍其中一种最为被广泛运用的折反射望远镜

施密特卡式:

是1930 年由施密特(Schmidt)发明用作天文摄影。主要是利用一球面凹镜作为主镜以消除彗形像差,同时利用一非球面透镜(Aspheric Iens)放于主镜前适当位置作为矫正镜(Corrector)以矫正主镜的球面差。这样可以得出一个阔角(可达40一50度)的视场而没有一般反射镜常有的球面差与彗形像差,只有矫正镜做成的轻微色差而已。摄影用的施密特望远镜,焦比方面可以做到很小(通常在f1至f3间,最小可达″0.6),因此很适宜于星野及星云摄影。 望远镜的光学形式与优缺点简介 优缺点简介 望远镜的光学形式分为折射式、反射式、折反射式等三种,望远镜的特性如下:

折射镜的特长----影像清晰锐利,好的镜片几乎无色差。

----使用寿命很长,但须注意不要让镜片发霉。

折射镜的缺点----价格高昂。 -

---同样价格买到的望远镜径比反射式的小。

反射镜的特长----口径较大,影像明亮。

缺点----镜面镀膜,三至五年即需重镀,否则星星愈看愈暗。

----周边像差使星象肥大。

折反射镜分为(1)纯施密特(2)施密特・盖赛林式与(3)马克斯托夫式三种:

1.纯施密特镜--天文摄影专用

2.施密特・盖赛林式与

3.马克斯托夫式都具备反射镜的特长,而且将像差的毛病减少了。

因此对行星,月面观察有兴趣的朋友,请选择折射镜与折反射镜,对星云、星团有兴趣的朋友,请选择反射镜。如果您的经济能力许可,请尽可能地购买大口径的望远镜,因望远镜口径愈大,集光力也就愈强。不过也要注意品牌,因为品牌与光学品质常成正比。如Nikon、ZEISS、高桥VIXEN(折射镜)

折射镜的镜片结构是由二片到三片所组合的消色差设计。

施密特镜前方透镜是特殊的波浪状,这种望远镜只能拿来拍照摄影。

马克斯托夫望远镜,前方的修正透镜是弯月型的。

广义上的望远镜不仅仅包括工作在可见光波段的光学望远镜,还包括射电,红外,紫外,X射线,甚至γ射线望远镜. 一,光学望远镜. 1609年,伽利略制造出第一架望远镜,至今已有近四百年的历史,其间经历了重大的飞跃,根据物镜的种类可以分为三种: 1,折射望远镜 折射望远镜的物镜由透镜或透镜组组成.早期物镜为单片结构,色差和球差严重,使得观看到的天体带有彩色的光斑.为了减少色差,人们拼命增大物镜的焦距,1673年,J.Hevelius制造了一架长达46米的望远镜,整个镜筒被吊装在一根30米高的桅杆上,需要多人用绳子拉着转动升降.惠更斯干脆将物镜和目镜分开,将物镜吊在百尺高杆上.直到19世纪末,人们发明了由两块折射率不同的玻璃分别制成凸透镜和凹透镜,再组合起来的复合消色差物镜,才使得这场长度竞赛得到终止. 折射望远镜分为伽利略结构和开普勒结构两类.其中,伽利略结构历史最悠久,其目镜为凹透镜,能直接成正立的像,但是视场小,一般为民用 的2――4倍的儿童玩具采用.而绝大多数常见的望远镜都是开普勒结构,其目镜一般是凸透镜或透镜组,由于其光路中有实象,可以安装测距或瞄准分划板用来测量距离.但是简单的开普勒结构所成的像是倒立的,需要在光路内加上正像系统使其正过来,常见的正像系统为普罗棱镜或屋脊棱镜,既起到正像的作用,又使光路折回,缩短整机长度. 2,反射望远镜 该类镜最早由牛顿发明,其物镜是凹面反射镜,没有色差,而且将凹面制成旋转抛物面即可消除球差.凹面上镀有反光膜,通常是铝.反射望远镜镜筒较短,而且易于制造更大的口径,所以现代大型天文望远镜几乎无一例外都是反射结构. 反射望远镜的结构里,除了主物镜外,还装有一或几个小的反射镜,用来改变光线方向便于安装目镜.由于反射式望远镜的入射光线仅在物镜表面反射,所以对光学玻璃的内部品质比折射镜要求低.1990年,美国在夏威夷建成当时口径最大的凯克望远镜,该镜采用了一些前所未有的新技术:1,主物镜由36面六边形薄镜片拼和而成,厚度仅为10厘米.2,有计算机控制背面直撑点,补偿重力引起的形变.3,能通过改变镜面曲率补偿大气扰动.这些新技术的采用使得人类发射太空望远镜的要求不再迫切. 3,折反射望远镜. 折反射望远镜的物镜是由折射镜和反射镜组合而成.主镜是球面反射镜,副镜是一个透镜,用来矫正主镜的像差.此类望远镜视场大,光力强,适合观测流星,彗星,以及巡天寻找新天体.根据副镜的形状,折反射镜又可以分为施密特结构和马克苏托夫结构,前者视场大,像差小;后者易于制造. 二,射电望远镜(电波望远镜)射电望远镜的原理与卫星电视天线接收器的原理大同小异,它通过接收来自遥远天体的电磁辐射信号,分析其强度,频谱和偏振来进行研究.其主要有两个基本指标――分辩率和灵敏度.从光学中,我们知道望远镜的分辩率与波长λ成正比,与望远镜的口径D成反比.由于光学望远镜是工作在波长为微微米的数量级上,而射电望远镜工作在毫米数量级上,之间相差10000倍,那么要达到同样的分辩率,射电望远镜的口径(孔径)就要比光学望远镜大一万倍.好在,由于运用了射电干涉仪,可以用相距很远两地的射电望远镜之间的直线距离代替望远镜的真实孔径.这种技术叫做甚长基线干涉.它可以使有效口径大到几千公里甚至更远,从而大大提高了分辩率,使人们有可能看到天体的精细结构.然而有得必有失,灵敏度在分辩率提高的同时却降低了.灵敏度取决于射电望远镜的有效面积,天线造的越大,其灵敏度越高.然而由于射电干涉仪的运用,我们用两地望远镜之间的直线(基线)长度来代替真实孔径,却没有增大与其对应的天线的有效面积,从而使射电望远镜灵敏度成倍下降,这也就决定了射电天文学的研究对象――主要是对高能天体观测以及对射电天文谱线的分析.

望远镜大致分为手持和非手持。手持式包括单双筒望远镜,双筒望远镜中有包括屋脊式、保罗式,非手持包括哨所镜,观鸟镜和天文望远镜,我现在用的是千里眼探索者望远镜,里面有各种各样的类型,你可以看看有没有你需要的

顶一下
(0)
0%
踩一下
(0)
0%